
The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

ORG ; THREE
Dec Hex Bin
2 2 00000010

Assembly
Language
Programming

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

OBJECTIVES
this chapter enables the student to:

• Flag concepts
• Instruction Types in 8086
• Assembly language program basics.
• Flow charts summary
• Code simple Assembly language instructions.
• Assemble, link, and run a simple Assembly language

program.
• Procedures
• Code control transfer instructions such as conditional

and unconditional jumps and call instructions.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

FLAG REGISTER

• Many Assembly language instructions alter flag
register bits & some instructions function differently
based on the information in the flag register.

• The flag register is a 16-bit register sometimes
referred to as the status register.
– Although 16 bits wide, only some of the bits are used.

• The rest are either undefined or reserved by Intel.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

FLAG REGISTER

• Six flags, called conditional flags, indicate some
condition resulting after an instruction executes.

– These six are CF, PF, AF, ZF, SF, and OF.

– The remaining three, often called control flags, control
the operation of instructions before they are executed.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

bits of the flag register

• Flag register bits used in x86 Assembly language
programming, with a brief explanation each:
– CF (Carry Flag) - Set when there is a carry out, from d7 after an

8-bit operation, or d15 after a 16-bit operation.
• Used to detect errors in unsigned arithmetic operations.

– PF (Parity Flag) - After certain operations, the parity
of the result's low-order byte is checked.

• If the byte has an even number of 1s, the parity flag is set to 1;
otherwise, it is cleared.

– AF (Auxiliary Carry Flag) - If there is a carry from d3 to d4 of an
operation, this bit is set; otherwise, it is cleared.

• Used by instructions that perform BCD (binary coded
decimal) arithmetic.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

bits of the flag register

• Flag register bits used in x86 Assembly language
programming, with a brief explanation each:
– ZF (Zero Flag) - Set to 1 if the result of an arithmetic or logical operation is zero;

otherwise, it is cleared.

– SF (Sign Flag) - Binary representation of signed numbers uses the most significant bit as the
sign bit.

• After arithmetic or logic operations, the status of this sign
bit is copied into the SF, indicating the sign of the result.

– TF (Trap Flag) - When this flag is set it allows the program to single-step, meaning to execute
one instruction at a time.

• Single-stepping is used for debugging purposes.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

bits of the flag register

• Flag register bits used in x86 Assembly language
programming, with a brief explanation each:
– IF (Interrupt Enable Flag) - This bit is set or cleared to enable/disable only

external maskable interrupt requests.

– DF (Direction Flag) - Used to control the direction of string operations.
– OF (Overflow Flag) - Set when the result of a signed number operation is too large, causing

the high-order
bit to overflow into the sign bit.

• Used only to detect errors in signed arithmetic operations.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

flag register and ADD instruction

• Flag bits affected by the ADD instruction:
– CF (carry flag); PF (parity flag); AF (auxiliary carry flag).
– ZF (zero flag); SF (sign flag); OF (overflow flag).

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

flag register and ADD instruction

• Flag bits affected by the ADD instruction:
– CF (carry flag); PF (parity flag); AF (auxiliary carry flag).
– ZF (zero flag); SF (sign flag); OF (overflow flag).

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

flag register and ADD instruction

• It is important to note differences between 8- and
16-bit operations in terms of impact on the flag bits.
– The parity bit only counts the lower 8 bits of the result

and is set accordingly.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

flag register and ADD instruction

• The carry flag is set if there is a carry beyond bit d15
instead of bit d7.
– Since the result of the entire 16-bit operation is zero (meaning

the contents of BX), ZF is set to high.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

flag register and ADD instruction

• Instructions such as data transfers (MOV) affect no flags.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

use of the zero flag for looping

• A widely used application of the flag register is the use of
the zero flag to implement program loops.
– A loop is a set of instructions repeated a number of times

• More on details on LOOPS later!

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

use of the zero flag for looping

• As an example, to add 5 bytes of data, a counter can be
used to keep track of how many times the loop needs to
be repeated.

– Each time the addition is performed the counter
is decremented and the zero flag is checked.

• When the counter becomes zero, the zero flag is
set (ZF = 1) and the loop is stopped.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

use of the zero flag for looping

• Register CX is used to hold the counter.
– BX is the offset pointer.

• (SI or DI could have been used instead)

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

use of the zero flag for looping

• AL is initialized before the start of the loop
– In each iteration, ZF is checked by the JNZ instruction

• JNZ stands for "Jump Not Zero“, meaning that if ZF = 0,
jump to a new address.

• If ZF = 1, the jump is not performed, and the instruction
below the jump will be executed.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

use of the zero flag for looping

• JNZ instruction must come immediately after the
instruction that decrements CX.
– JNZ needs to check the effect of "DEC CX" on ZF.

• If any instruction were placed between them, that instruction might
affect the zero flag.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745818

Addressing Modes

• Register Addressing Mode
– MOV AX, BX
– MOV ES,AX
– MOV AL,BH

• Immediate Addressing Mode
– MOV AL,15h
– MOV AX,2550h
– MOV CX,625

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745819

Direct Addressing Mode

02003 FF

Example:
MOV AL,[03]

AL=?

MOV CX, [address]

BEED

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745820

Register Indirect Addressing Mode

MOV AX,

B
X
DI
SI

BEED

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745821

Example for Register Indirect Addressing

• Assume that DS=1120, SI=2498 and AX=17FE show the memory locations
after the execution of:

MOV [SI],AX

DS (Shifted Left) + SI = 13698.

With little endian convention:

Low address 13698 FE

High Address 13699 17

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745822

Based-Relative Addressing Mode

MOV AH, [] + 1234hDS:BX
SS:BP

AX

DS

BX

1234

3AH
+

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745823

Indexed Relative Addressing Mode

MOV AH, [] + 1234hSI
DI

Example: What is the physical address MOV [DI-8],BL if DS=200 & DI=30h ?
DS:200 shift left once 2000 + DI + -8 = 2028

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745824

Based-Indexed Relative Addressing Mode

• Based Relative + Indexed Relative
• We must calculate the PA (physical address)

CS
SS BX SI 8 bit displacement

PA= DS : BP + DI + 16 bit displacement
ES

MOV AH,[BP+SI+29]
or
MOV AH,[SI+29+BP]
or
MOV AH,[SI][BP]+29

The register
order does not
matter

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745825

Based-Indexed Addressing Mode

MOV BX, 0600h
MOV SI, 0010h ; 4 records, 4 elements each.
MOV AL, [BX + SI + 3]

OR

MOV BX, 0600h
MOV AX, 004h ;
MOV CX,04;
MUL CX
MOV SI, AX
MOV AL, [BX + SI + 3]

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745826

Summary of the addressing modes

Addressing Mode Operand Default Segment

Register Reg None

Immediate Data None

Direct [offset] DS

Register Indirect [BX]
[SI]
[DI]

DS
DS
DS

Based Relative [BX]+disp
[BP]+disp

DS
SS

Indexed Relative [DI]+disp
[SI]+disp

DS
DS

Based Indexed
Relative

[BX][SI or DI]+disp
[BP][SI or DI]+disp

DS
SS

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745827

16 bit Segment Register Assignments

Type of Memory
Reference

Default Segment Alternate Segment Offset

Instruction Fetch CS none IP

Stack Operations SS none SP,BP

General Data DS CS,ES,SS BX, address

String Source DS CS,ES,SS SI, DI, address

String Destination ES None DI

Brey

Segment
Registers

CS DS ES SS

Offset
Register

IP SI,DI,BX SI,DI,BX SP,BP

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745828

Segment override

Instruction Examples Override Segment Used Default Segment

MOV AX,CS:[BP] CS:BP SS:BP

MOV DX,SS:[SI] SS:SI DS:SI

MOV AX,DS:[BP] DS:BP SS:BP

MOV CX,ES:[BX]+12 ES:BX+12 DS:BX+12

MOV SS:[BX][DI]+32,AX SS:BX+DI+32 DS:BX+DI+32

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745829

Example for default segments

• The following registers are used as offsets. Assuming that the default
segment used to get the logical address, give the segment register
associated?

a) BP b)DI c)IP d)SI, e)SP, f) BX

• Show the contents of the related memory locations after the execution of
this instruction
MOV [BP][SI]+10,DX
if DS=2000, SS=3000,CS=1000,SI=4000,BP=7000,DX=1299 (all hex)

SS(0)=30000
30000+4000+7000+10=3B010

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745830

Assembly Language

• There is a one-to-one relationship between assembly and
machine language instructions

• What is found is that a compiled machine code
implementation of a program written in a high-level
language results in inefficient code
– More machine language instructions than an assembled version of

an equivalent handwritten assembly language program

• Two key benefits of assembly language programming
– It takes up less memory
– It executes much faster

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745831

Languages in terms of applications

• One of the most beneficial uses of assembly language programming is real-time
applications.

• Real time means the task required by the application must be completed before any
other input to the program that will alter its operation can occur

• For example the device service routine which controls the operation of the floppy
disk drive is a good example that is usually written in assembly language

• Assembly language not only good for controlling hardware devices but also
performing pure software operations

– searching through a large table of data for a special string of characters
– Code translation from ASCII to EBCDIC
– Table sort routines
– Mathematical routines

• Assembly language: perform real-time operations
• High-level languages: Those operations mostly not critical in time.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745832

Converting Assembly Language
Instructions to Machine Code

• An instruction can be coded with 1 to 6 bytes
• Byte 1 contains three kinds of information:

– Opcode field (6 bits) specifies the operation such as add, subtract, or move
– Register Direction Bit (D bit)

• Tells the register operand in REG field in byte 2 is source or destination operand
– 1:Data flow to the REG field from R/M
– 0: Data flow from the REG field to the R/M

– Data Size Bit (W bit)
• Specifies whether the operation will be performed on 8-bit or 16-bit data

– 0: 8 bits
– 1: 16 bits

• Byte 2 has two fields:
– Mode field (MOD) – 2 bits
– Register field (REG) - 3 bits
– Register/memory field (R/M field) – 2 bits

OPCODE D W MOD REG R/M

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745833

Continued

• REG field is used to identify the register for the first operand

REG W = 0 W = 1
000 AL AX

001 CL CX

010 DL DX

011 BL BX

100 AH SP

101 CH BP

110 DH SI

111 BH DI

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745834

Continued

• 2-bit MOD field and 3-bit R/M field together specify the second operand

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.6: FULL SEGMENT DEFINITION
the emu8086 assembler

• A simple, popular assembler for 8086 Assembly
language programs is called emu8086.

See emu8086 screenshots on page 80 - 82 of your textbook.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.6: FULL SEGMENT DEFINITION
the emu8086 assembler

Download the emu8086
assembler from this website:

http://www.emu8086.com

See a Tutorial on how to use it at:
http://www.MicroDigitalEd.com

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.6: FULL SEGMENT DEFINITION
EXE vs. COM files
• The EXE file is used widely as it can be of any size.

– There are occasions when, due to a limited amount of memory,
one needs to have very compact code.

• COM files must fit in a single segment.
– The x86 segment size is 64K bytes, thus the COM file cannot be

larger than 64K.

• To limit the size to 64K requires defining the data inside
the code segment and using the end area
of the code segment for the stack.
– In contrast to the EXE file, the COM file has no separate data

segment definition.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.6: FULL SEGMENT DEFINITION
EXE vs. COM files

• The header block, which occupies 512 bytes of memory, precedes every EXE
file.
– It contains information such as size, address location

in memory, and stack address of the EXE module.
– The COM file does not have a header block.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.7: FLOWCHARTS AND PSEUDOCODE
structured programming

• Structured programming uses three basic types
of program control structures:
– Sequence.
– Control.
– Iteration.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.7: FLOWCHARTS AND PSEUDOCODE
structured programming

• Principles a structured program should follow:
– The program should be designed before it is coded.

• By using flowcharting or pseudocode, the design is clear
those coding, as well as those maintaining the program later.

– Use comments within the program and documentation.
• This will help other figure out what the program does

and how it does it.
– The main routine should consist primarily of calls to subroutines that

perform the work of the program.
• Sometimes called top-down programming.
• Using subroutines to accomplish repetitive tasks saves

time in coding, and makes the program easier to read.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.7: FLOWCHARTS AND PSEUDOCODE

• Principles a structured program should follow:
– Data control is very important.

• The programmer should document the purpose of each variable, and which
subroutines might alter its value.

• Each subroutine should document its input/output variables, and which input
variables might be altered within it.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.7: FLOWCHARTS AND PSEUDOCODE
flowcharts

• Flowcharts use graphic symbols to
represent different types of program
operations.
– The symbols are connected together

to show the flow of execution of the
program.

• Flowcharting has been standard
industry practice for decades.

– Flowchart templates help you draw
the symbols quickly and neatly.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.7: FLOWCHARTS AND PSEUDOCODE
pseudocode
• An alternative to flowcharts, pseudocode, involves

writing brief descriptions of the flow of the code.
– SEQUENCE is executing instructions one after the other.

Figure 2-15
SEQUENCE
Pseudocode vs. Flowchart

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.7: FLOWCHARTS AND PSEUDOCODE
pseudocode
• An alternative to flowcharts, pseudocode, involves

writing brief descriptions of the flow of the code.
– IF-THEN-ELSE and IF-THEN are control programming structures,

which can indicate one statement or a group
of statements.

Figure 2-16
IF-THEN-ELSE
Pseudocode vs. Flowchart

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.7: FLOWCHARTS AND PSEUDOCODE
pseudocode
• An alternative to flowcharts, pseudocode, involves writing brief

descriptions of the flow of the code.
– IF-THEN-ELSE and IF-THEN are control programming structures,

which can indicate one statement or a group
of statements.

Figure 2-17
IF-THEN
Pseudocode vs. Flowchart

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.7: FLOWCHARTS AND PSEUDOCODE
pseudocode
• An alternative to flowcharts, pseudocode, involves writing brief

descriptions of the flow of the code.
– REPEAT-UNTIL and WHILE-DO are iteration control structures,

which execute a statement or group of statements repeatedly.

Figure 2-18
REPEAT-UNTIL
Pseudocode vs. Flowchart

REPEAT-UNTIL structure always
executes the statement(s) at least
once, and checks the condition
after each iteration.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.7: FLOWCHARTS AND PSEUDOCODE
pseudocode
• An alternative to flowcharts, pseudocode, involves

writing brief descriptions of the flow of the code.
– REPEAT-UNTIL and WHILE-DO are iteration control structures,

which execute a statement or group of statements repeatedly.

Figure 2-19
WHILE-DO
Pseudocode vs. Flowchart

WHILE-DO may not execute the
statement(s) at all, as the condition
is checked at the beginning of
each iteration.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.7: FLOWCHARTS AND PSEUDOCODE
control structures

Flowchart vs. pseudocode for Program
showing steps for
initializing/decrementing counters.
Housekeeping, such as initializing the
data segment register in the MAIN
procedure are not included in the
flowchart or pseudocode.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.7: FLOWCHARTS AND PSEUDOCODE
control structures

• The purpose of flowcharts or pseudocode is to show the program
flow, and what the program does.
– Pseudocode gives the same information as a flowchart,

in a more compact form.
• Often written in layers, in a top-down manner.

– Code specific to a certain language or operating platform
is not described in the pseudocode or flowchart.

• Ideally, one could take a flowchart or pseudocode
and code the program in any language.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745850

Assembly Language

• There is a one-to-one relationship between assembly and
machine language instructions

• What is found is that a compiled machine code
implementation of a program written in a high-level language
results in inefficient code
– More machine language instructions than an assembled

version of an equivalent handwritten assembly language
program

• Two key benefits of assembly language programming
– It takes up less memory
– It executes much faster

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.2: ASSEMBLE, LINK, AND RUN A PROGRAM

• There are assembler & linker programs.
– Many editors or word processors can be used to create

and/or edit the program, and produce an ASCII file.
– The steps to create an executable Assembly language program

are as follows:

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.2: ASSEMBLE, LINK, AND RUN A PROGRAM

• The source file must end in ".asm“.
– The ".asm" file is assembled by an assembler, like MASM or

EMU8086 etc.
• The assembler will produce an object file and a list file, along with

other files useful to the programmer.

• The extension for the object file must be ".obj".
– This object file is input to the LINK program, to produce

the executable program that ends in ".exe".
– The ".exe" file can be run (executed) by the microprocessor.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

ORG 100h is a compiler directive (it tells compiler how to handle
the source code). This directive is very important when you work
with variables. It tells compiler that the executable file will be loaded
at the offset of 100h (256 bytes), so compiler should calculate the
correct address for all variables when it replaces the variable names
with their offsets. Directives are never converted to any real
machine code.
Why executable file is loaded at offset of 100h? Operating system
keeps some data about the program in the first 256 bytes of the

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.2: ASSEMBLE, LINK, AND RUN A PROGRAM

Before feeding the ".obj" file
into LINK, all syntax errors
must be corrected.
Fixing these errors will not
guarantee the program will
work as intended, as the program
may contain conceptual errors.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.2: ASSEMBLE, LINK, AND RUN A PROGRAM
LINKing the program

• The assembler creates the opcodes, operands & offset addresses under the
".obj" file.

• The LINK program produces the ready-to-run program with the ".exe"
(EXEcutable) extension.
– The LINK program sets up the file so it can be loaded

by the OS and executed.
• The program can be run at the OS level, using the following command: C>myfile

– When the program name is typed in at the OS level, the OS loads the
program in memory.

• Referred to as mapping, which means that the program is mapped into
the physical memory of the PC.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.2: ASSEMBLE, LINK, AND RUN A PROGRAM
TITLE directives

– It is common to put the NAME of the PROGRAM
immediately after the TITLE pseudo-instruction.

• And a brief description of the function of the program.

– The text after the TITLE pseudo-instruction cannot be
exceed 60 ASCII characters.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745857

Software

• The sequence of commands used to tell a microcomputer what to do is
called a program

• Each command in a program is called an instruction
• 8088 understands and performs operations for 117 basic instructions
• The native language of the IBM PC is the machine language of the

8088
• A program written in machine code is referred to as machine code
• In 8088 assembly language, each of the operations is described by

alphanumeric symbols instead of just 0s or 1s.

ADD AX, BX

Opcode Source operand

Destination operand

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.0: ASSEMBLY LANGUAGE

• An Assembly language program is a series of statements, or lines.
– Either Assembly language instructions, or statements called

directives.
• Directives (pseudo-instructions) give directions to the

assembler about how it should translate the Assembly
language instructions into machine code.

• Assembly language instructions consist of four fields:
[label:] mnemonic [operands][;comment]
– Brackets indicate that the field is optional.

• Do not type in the brackets.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

• The program loads AL & BL with DATA1 & DATA2,
ADDs them together, and stores the result in SUM.

2.1: DIRECTIVES AND A SAMPLE PROGRAM

• The program loads AL & BL with DATA1 & DATA2,
ADDs them together, and stores the result in SUM.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.1: DIRECTIVES AND A SAMPLE PROGRAM
assembly language instructions

• The label field allows the program to refer to a line of
code by name.
– The label field cannot exceed 31 characters.

• A label must end with a colon when it refers to an
opcode generating instruction.

[label:] mnemonic [operands][;comment]

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.1: DIRECTIVES AND A SAMPLE PROGRAM
assembly language instructions

• The mnemonic (instruction) and operand(s) fields
together accomplish the tasks for which the program
was written.

[label:] mnemonic [operands][;comment]

– The mnemonic opcodes are ADD and MOV.
– "AL,BL" and "AX,6764" are the operands.

• Instead of a mnemonic and operand, these fields could
contain assembler pseudo-instructions, or directives.

• Directives do not generate machine code and are used
only by the assembler as opposed to instructions.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.1: DIRECTIVES AND A SAMPLE PROGRAM
assembly language instructions
[label:] mnemonic [operands][;comment]

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.1: DIRECTIVES AND A SAMPLE PROGRAM
assembly language instructions

• The comment field begins with a ";" and may be at the
end of a line or on a line by themselves.
– The assembler ignores comments.

• Comments are optional, but highly recommended to
make it easier to read and understand the program.

[label:] mnemonic [operands][;comment]

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.4: CONTROL TRANSFER INSTRUCTIONS
rules for names in Assembly language

• The names used for labels in Assembly language programming consist of…
– Alphabetic letters in both upper- and lowercase.
– The digits 0 through 9.
– Question mark (?); Period (.); At (@)
– Underline (_); Dollar sign ($)

• Each label name must be unique.
– They may be up to 31 characters long.

• The first character must be an alphabetic or special character.
– It cannot be a digit.
– The period can only be used as the first character.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.5: DATA TYPES AND DATA DEFINITION
x86 data types

• The 8088/86 processor supports many data types.
– Data types can be 8- or 16-bit, positive or negative.

• The programmer must break down data larger than
16 bits (0000 to FFFFH, or 0 to 65535 in decimal).

– A number less than 8 bits wide must be coded as
an 8-bit register with the higher digits as zero.

• A number is less than 16 bits wide must use all 16 bits.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

Compiler directives

Syntax for a variable declaration:

name DB value

name DW value

DB - stays for Define Byte.
DW - stays for Define Word.

name - can be any letter or digit combination, though it should start with a letter.
It's possible to declare unnamed variables by not specifying the name (this variable
will have an address but no name).

value - can be any numeric value in any supported numbering system
(hexadecimal, binary, or decimal), or "?" symbol for variables that are not
initialized.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.5: DATA TYPES AND DATA DEFINITION
DB define byte

• One of the most widely used data directives, it allows
allocation of memory in byte-sized chunks.
– This is the smallest allocation unit permitted.
– DB can define numbers in decimal, binary, hex, & ASCII.

• D after the decimal number is optional.
• B (binary) and H (hexadecimal) is required.
• To indicate ASCII, place the string in single quotation marks.

• DB is the only directive that can be used to define ASCII
strings larger than two characters.
– It should be used for all ASCII data definitions.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.5: DATA TYPES AND DATA DEFINITION
DB define byte
• Some DB examples:

– Single or double quotes can be used around ASCII
strings.

• Useful for strings, which should contain a single quote,
such as "O'Leary".

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.1: DIRECTIVES AND A SAMPLE PROGRAM
data segment

• The DB directive is used by the assembler to allocate
memory in byte-sized chunks.
– Each is defined as DB (define byte).

• Memory can be allocated in different sizes.
– Data items defined in the data segment will be

accessed in the code segment by their labels.
• DATA1 and DATA2 are given initial values in the data

section.
• SUM is not given an initial value.

– But storage is set aside for it.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745870

DataTypes and Data Definition

DATA1 DB 25
DATA2 DB 10001001b
DATA3 DB 12h

ORG 0010h ;indicates distance from initial DS location
DATA4 DB “2591”

ORG 0018h ;indicates distance from initial DS location
DATA5 DB ?

This is how data is initialized in the data segment
0000 19
0001 89
0002 12
0010 32 35 39 31
0018 00

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745871

DB DW DD

.data
MESSAGE2 DB '1234567'

MESSAGE3 DW 6667H

data1 db 1,2,3

db 45h

db 'a'

db 11110000b

data2 dw 12,13

dw 2345h

dd 300h

; how it looks like in memory

31 32 33 34 35 36 37

67 66

1 2 3

45

61

F0

0C 00 0D 00

45 23

00 03 00 00

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745872

More Examples

DB 6 DUP(FFh); fill 6 bytes with ffh

DW 954
DW 253Fh ; allocates two bytes
DW 253Fh

DD 5C2A57F2h ;allocates four bytes
DQ 12h ;allocates eight bytes

COUNTER1 DB COUNT
COUNTER2 DB COUNT

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.5: DATA TYPES AND DATA DEFINITION
DB define byte
• List file for DB examples.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.5: DATA TYPES AND DATA DEFINITION
DW define word
• DW is used to allocate memory 2 bytes (one word) at a

time:

• List file for DW examples.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.5: DATA TYPES AND DATA DEFINITION
EQU equate

• EQU associates a constant value with a data label.
– When the label appears in the program, its constant value will be

substituted for the label.
– Defines a constant without occupying a memory location.

• EQU directive assigns a symbolic name to a string or constant.
– Maxint equ 0ffffh
– COUNT EQU 2

• EQU for the counter constant in the immediate addressing mode:
COUNT EQU 25

• Assume a constant (a fixed value) used in many different places in the
data and code segments. By use of EQU, one can change it once and
the assembler will change all of them.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.5: DATA TYPES AND DATA DEFINITION
DD define doubleword
• The DD directive is used to allocate memory locations that are 4 bytes (two

words) in size.
– Data is converted to hex & placed in memory locations

• Low byte to low address and high byte to high address.

• List file for DD examples.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.5: DATA TYPES AND DATA DEFINITION
DQ define quadword
• DQ is used to allocate memory 8 bytes (four words) in size, to

represent any variable up to 64 bits wide:

• List file for DQ examples.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.5: DATA TYPES AND DATA DEFINITION
directives
• Figure 2-7 shows the memory dump of the data section,

including all the examples in this section.
– It is essential to understand the way operands are stored in

memory.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.5: DATA TYPES AND DATA DEFINITION
directives
• All of the data directives use the little endian format.

– For ASCII data, only DB can define data of any length.
• Use of DD, DQ, directives for ASCII strings of more

than 2 bytes gives an assembly error.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.5: DATA TYPES AND DATA DEFINITION
directives
• Review "DATA20 DQ 4523C2", residing in memory

starting at offset 00C0H.
– C2, the least significant byte, is in location 00C0, with

23 in 00C1, and 45, the most significant byte, in 00C2.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.5: DATA TYPES AND DATA DEFINITION
directives
• When DB is used for ASCII numbers, it places them

backwards in memory.
– Review "DATA4 DB '2591'" at origin 10H:32,

• ASCII for 2, is in memory location 10H;35; for 5, in 11H; etc.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745882

More assembly – OFFESET, SEG, EQU

• OFFSET
– The offset operator returns the distance of a label or variable from the

beginning of its segment. The destination must be 16 bits
– mov BX, offset count

• SEG
– The segment operator returns the segment part of a label or variable’s

address.
Push DS
Mov AX, seg array
Mov DS, AX
Mov BX, offset array
.
Pop DS

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

DUP (Duplicate)

• DUP operator only appears after a storage allocation directive.
– db 20 dup(?)

number DUP (value(s))
number - number of duplicate to make (any constant value).
value - expression that DUP will duplicate.

for example:
c DB 5 DUP(9)
is an alternative way of declaring:
c DB 9, 9, 9, 9, 9

one more example:
d DB 5 DUP(1, 2)
is an alternative way of declaring:
d DB 1, 2, 1, 2, 1, 2, 1, 2, 1, 2

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.5: DATA TYPES AND DATA DEFINITION
DUP duplicate

• DUP will duplicate a given number of characters.

– Two methods of filling six memory locations with FFH.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.5: DATA TYPES AND DATA DEFINITION
DUP duplicate

• List file for DUP examples.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745886

The PTR Operator - Byte or word or doubleword?

• INC [20h] ; is this byte/word/dword? or
• MOV [SI],5

– Is this byte 05?
– Is this word 0005?
– Or is it double word 00000005?

• To clarify we use the PTR operator
– INC BYTE PTR [20h]
– INC WORD PTR [20h]
– INC DWORD PTR [20h]

• or for the MOV example:
– MOV byte ptr [SI],5
– MOV word ptr[SI],5

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745887

The PTR Operator

• Would we need to use the PTR
operator in each of the following?

MOV AL,BVAL
MOV DL,[BX]
SUB [BX],2
MOV CL,WVAL
ADD AL,BVAL+1

.data
BVAL DB 10H,20H
WVAL DW 1000H

MOV AL,BVAL
MOV DL,[BX]
SUB [BX],byte ptr 2
MOV CL,byte ptr WVAL
ADD AL,BVAL+1

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.5: DATA TYPES AND DATA DEFINITION
ORG origin
• ORG is used to indicate the beginning of the offset

address.
– ORG 100h is a compiler directive (it tells compiler how to handle the source code). This

directive is very important when you work with variables. It tells compiler that the executable
file will be loaded at the offset of 100h (256 bytes), so compiler should calculate the correct
address for all variables when it replaces the variable names with their offsets. Directives are
never converted to any real machine code.

ORG 100h MOV AL, var1 MOV BX, var2 RET ; stops the program. VAR1 DB 7 var2 DW 1234h

ORG 100h

MOV AL, var1
MOV BX, var2

RET ; stops the program.

VAR1 DB 7
var2 DW 1234h

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

Equivalent code using only DB

ORG 100h

DB 0A0h
DB 08h
DB 01h

DB 8Bh
DB 1Eh
DB 09h
DB 01h

DB 0C3h

DB 7

DB 34h
DB 12h

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

Procedures
• A procedure is a group of instructions designed to

accomplish a specific function.
– A code segment is organized into several small procedures to

make the program more structured.

• Every procedure must have a name defined by the PROC
directive.
– Followed by the assembly language instructions, and closed by

the ENDP directive.
• The PROC and ENDP statements must have the same label.

– The PROC directive may have the option FAR or NEAR.
• The OS requires the entry point to the user program

to be a FAR procedure.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

Procedures

• The syntax for procedure declaration:

name PROC
; here goes the code
; of the procedure ...

RET
name ENDP

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

Example Proc

ORG 100h
main proc ; this is optional but very strongly recommended
MOV AL, 1
MOV BL, 2

CALL m2
CALL m2
CALL m2
CALL m2

RET ; return to operating system.
main endp ; this is optional but very strongly recommended

m2 PROC
MUL BL ; AX = AL * BL.
RET ; return to caller.
m2 ENDP

END ;main program should end with END

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

assembly language subroutines

It is common to have one main program and
many subroutines to be called from the main.
Each subroutine can be a separate module,
tested separately, then brought together.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.3: MORE SAMPLE PROGRAMS
various approaches to Program 2-1

• Variations of Program 2-1 clarify use of addressing
modes, and show that the x86 can use any general-
purpose register for arithmetic and logic operations.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.3: MORE SAMPLE PROGRAMS

• Program 2-1, and the list file generated when the program was assembled.

TITLE ADD_5_BYTES

org 100h

DATA_IN DB 25H,12H,15H,1FH,2BH

SUM DB ?

MAIN PROC FAR

MOV AX,@DATA

MOV DS, AX

MOV CX,5

MOV BX, OFFSET DATA_IN

MOV AL,0

CALL ADDC

MOV SUM, AL

MOV AH, 4CH

INT 21H

RET

MAIN ENDP

ADDC PROC ; A PROCEDURE USED!!!!!!

AGAIN: ADD AL, [BX]

INC BX

DEC CX

JNZ AGAIN

RET

ADDC ENDP

END

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.3: MORE SAMPLE PROGRAMS
analysis of Program 2-1
• Program 2-1, explained instruction by instruction:

– "MOV CX,05" will load the value 05 into the CX register.
• Used by the program as a counter for iteration (looping).

– "MOV BX,OFFSET DATA_IN" will load into BX the
offset address assigned to DATA_IN.

• The assembler starts at offset 0000? and uses memory for
the data, then assigns the next available offset memory for SUM (in this
case, 0005).

– "ADD AL,[BX]" adds the contents of the memory location pointed at by the
register BX to AL.

• Note that [BX] is a pointer to a memory location.
– "INC BX" increments the pointer by adding 1 to BX.

• This will cause BX to point to the next data item. (next byte)

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.3: MORE SAMPLE PROGRAMS
analysis of Program 2-1
• Program 2-1, explained instruction by instruction:

– "DEC CX" will decrement (subtract 1 from) the CX
counter and set the zero flag high if CX becomes zero.

– "JNZ AGAIN" will jump back to the label AGAIN as
long as the zero flag is indicating that CX is not zero.

• "JNZ AGAIN" will not jump only after the zero flag has
been set high by the "DEC CX" instruction (CX becomes
zero).

– When CX becomes zero, this means that the loop is
completed and all five numbers have been added to AL

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.3: MORE SAMPLE PROGRAMS
analysis of Program 2-2
Write a program that adds four words of data and saves the result. The values will be 234DH,1DE6H,
3BC7H and 566AH. Verify the result is: D364H
TITLE ADDS_4_words_data
ORG 100H
DATA_IN DW 234DH, 1DE6H, 3BC7H,566AH
ORG 10H
SUM DW ? ; The 16-bit data (a word) is stored with the low-order byte first, referred to as "little
endian.“
MAIN PROC FAR

MOV AX,@DATA
MOV DS, AX
MOV CX,4
MOV DI, OFFSET DATA_IN
MOV BX,00
CALL ADD_16
MOV SI, OFFSET SUM
MOV [SI], BX
MOV AH, 4CH
INT 21H

MAIN ENDP
END

ADD_16 PROC
ADD_LP: ADD BX,[DI]
INC DI
INC DI
DEC CX
JNZ ADD_LP
RET

ENDP ADD_16

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.3: MORE SAMPLE PROGRAMS
analysis of Program 2-2
• The address pointer is incremented twice, since the operand being

accessed is a word (two bytes).
– The program could have used "ADD DI,2" instead of using "INC

DI" twice.
• "MOV SI,OFFSET SUM" was used to load the pointer for the

memory allocated for the label SUM.
• "MOV [SI],BX" moves the contents of register BX to memory

locations with offsets 0010 and 0011.
• Program 2-2 uses the ORG directive to set the offset addresses for

data items.
– This caused SUM to be stored at DS:0010.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458100

Example program

Copy the contents of a block of memory (X bytes) starting at location SI to another
block of memory starting at DIh

MOV AX,2000
MOV DS,AX
MOV SI, 100
MOV DI, 120
MOV CX, 10

NXTPT: MOV AH, [SI]
MOV [DI], AH
INC SI
INC DI
DEC CX
JNZ NXTPT

100-10f

120-12f

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.3: MORE SAMPLE PROGRAMS
analysis of Program 2-3
• ACTUAL EXAMPLE TO RUN
TITLE TRANSFER_6_BYTES
ORG 100H
DATA_IN DB 25H,4FH,85H,1FH,2BH,0C4H
ORG 10H
COPY DB 6 DUP (?)
MAIN PROC FAR

MOV AX,@DATA
MOV DS, AX
MOV SI,OFFSET DATA_IN
MOV DI,OFFSET COPY
MOV CX, 06H
MOV_LOOP: MOV AL,[SI]

MOV [DI],AL
INC SI
INC DI

DEC CX
JNZ MOV_LOOP
MOV AH,4CH
INT 21H

MAIN ENDP
END

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.3: MORE SAMPLE PROGRAMS
analysis of Program 2-3

• C4 was coded in the data segments as 0C4.
– Indicating that C is a hex number and not a letter.

• Required if the first digit is a hex digit A through F.

• This program uses registers SI & DI as pointers
to the data items being manipulated.
– The first is a pointer to the data item to be copied.
– The second points to the location the data is copied to.

• With each iteration of the loop, both data pointers
are incremented to point to the next byte.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.6: FULL SEGMENT DEFINITION
segment definition

• The SEGMENT and ENDS directives indicate the beginning &ending of a
segment, in this format:

– The label, or name, must follow naming conventions and be unique.
• The [options] field gives important information to the

assembler for organizing the segment, but is not required.
– The ENDS label must be the same label as in the SEGMENT directive.

• In full segment definition, the ".MODEL" directive is not used.

LABEL SEGMENT DATA
DATA_IN DB 25H,4FH,85H,1FH,2BH,0C4H
ORG 10H
COPY DB 6 DUP (?)

END SEGMENT DATA

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.6: FULL SEGMENT DEFINITION
segment definition

Figure 2-8

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.6: FULL SEGMENT DEFINITION
segment definition

• using full segment definition.

See the entire program listing on page 78 of your textbook.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.6: FULL SEGMENT DEFINITION
segment definition

• rewritten using full segment definition.
TITLE TRANSFER
STSEG SEGMENT

DB 32 DUP (?)
STSEG ENDS
DTSEG SEGMENT

ORG 10H
DATA_IN DB 25H,4FH,85H,1FH,2BH,0C4H
ORG 28H
COPY DB 6 DUP (?)
DTSEG ENDS
CDSEG SEGMENT
MAIN PROC FAR
ASSUME CS:CDSEG, DS:DTSEG, SS:STSEG
MOV AX,DTSEG
MOV DS,AX
MOV SI, OFFSET DATA_IN
MOV DI, OFFSET COPY
MOV CX,06H
MOV_LOOP: MOV AL,[SI]
MOV [DI],AL
INC SI
INC DI
DEC CX
JNZ MOV_LOOP
MOV AH,4CH
INT 21H
MAIN ENDP
CDSEG ENDS
END MAIN

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.6: FULL SEGMENT DEFINITION
stack segment definition

• The stack segment shown contains the line
"DB 64 DUP (?)" to reserve 64 bytes of memory
for the stack.

• The stack segment shown contains the line
"DB 64 DUP (?)" to reserve 64 bytes of memory
for the stack.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.6: FULL SEGMENT DEFINITION
data segment definition
• In full segment definition, the SEGMENT directive names the data

segment and must appear before the data.
– The ENDS segment marks the end of the data segment:

• The code segment also begins and ends with SEGMENT and ENDS
directives:

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.6: FULL SEGMENT DEFINITION
code segment definition

• Immediately after PROC, the ASSUME directive, associates
segments with specific registers.
– By assuming the segment register is equal to the segment

labels used in the program.
• If an extra segment had been used, ES would

also be included in the ASSUME statement.
– ASSUME tells the assembler which of the segments, defined by

SEGMENT, should be used.
• Also helps the assembler to calculate the offset

addresses from the beginning of that segment.
• In "MOV AL, [BX] " the BX register is the offset of the data

segment.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.6: FULL SEGMENT DEFINITION
code segment definition

• On transfer of control from OS to the program, of
the three segment registers, only CS and SS have the
proper values.
– The DS value (and ES) must be initialized by the program.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

data segment

DATA_IN DW 234DH, 1DE6H, 3BC7H,566AH

SUM DW ? ;referred to as "little endi

ends

stack segment

dw 128 dup(0)

ends

code segment
main proc
start:

mov ax,data
mov ds,ax
MOV CX,4
MOV DI, OFFSET DATA_IN
MOV BX,00
ADD_LP: ADD BX,[DI]
INC DI
INC DI
DEC CX
JNZ ADD_LP
MOV SI, OFFSET SUM
MOV [SI], BX
MOV AH, 4CH
INT 21H
ret

end main
ends

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.4: CONTROL TRANSFER INSTRUCTIONS
conditional jumps
• Conditional jumps have mnemonics such as JNZ (jump not zero)

and JC (jump if carry).
– In the conditional jump, control is transferred to a new location

if a certain condition is met.
– The flag register indicates the current condition.

• For example, with "JNZ label", the processor looks at the zero flag
to see if it is raised.
– If not, the CPU starts to fetch and execute instructions from the

address of the label.
– If ZF = 1, it will not jump but will execute the next instruction

below the JNZ.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.4: CONTROL TRANSFER INSTRUCTIONS
conditional jumps

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.4: CONTROL TRANSFER INSTRUCTIONS
short jumps

• All conditional jumps are short jumps.
– The address of the target must be within -128 to +127 bytes of

the IP.
• The conditional jump is a two-byte instruction.

– One byte is the opcode of the J condition.
– The second byte is a value between 00 and FF.

• An offset range of 00 to FF gives 256 possible addresses.
• In a jump backward, the second byte is the

2's complement of the displacement value

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

– Since this is a NEAR call, only IP
is saved on the stack.

• The IP address 0206, which belongs
to the "MOV AX,142F" instruction,
is saved on the stack.

2.4: CONTROL TRANSFER INSTRUCTIONS
CALL statements
• For control to be transferred back to the caller, the last

subroutine instruction must be RET (return).
– For NEAR calls, the IP is restored..

• Assume SP = FFFEH:

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

2.4: CONTROL TRANSFER INSTRUCTIONS
short jumps
• The last instruction of the called subroutine must be a

RET instruction that directs the CPU to POP the top 2
bytes of the stack into the IP and resume executing at
offset address 0206.
– The number of PUSH and POP instructions (which alter the SP)

must match.
• For every PUSH there must be a POP.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

ENDS ; THREE
Dec Hex Bin
2 2 00000010

